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R&D, Technology Transfer and Productivity Growth: Evidence from 

Chinese Manufacturing Industries 

 

  

Abstract: Based on an industry-level data set for Chinese large- and medium-size 

manufacturing enterprises over the period of 1996–2006, the paper investigates the impacts of 

three technology acquisition channels, i.e. in-house R&D, foreign technology transfer and 

domestic technology transfer, on the productivity growth by using both the output elasticity and 

the rate of return methods. We find that in-house R&D makes substantial and significant 

contributions to productivity growth in Chinese manufacturing industries, and that technology 

transfers, whether foreign or domestic, have no significantly positive effects on productivity 

growth. When the productivity growth is decomposed into technical efficiency change and 

technological progress by using Data Envelopment Analysis, we also find that the important role 

of R&D in improving industry performance is mainly attributable to the contributions of R&D to 

technical efficiency change. 
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R&D, Technology Transfer and Productivity Growth: Evidence from 

Chinese Manufacturing Industries 

 

 

 

1. Introduction 

 

Technological change is an important determinant of long-run productivity growth and 

therefore of increases in living standards over time. Research and development (R&D), which 

leads to new products and processes that either increase firms’ revenues or reduce firms’ costs, is 

regarded as the fundamental driver of technological progress and endogenous growth. Therefore 

productivity growth should be amplified when R&D expenditures are also raised. Under the 

circumstance of economic globalization, another important way to achieve technological progress 

is to fully absorb and exploit the advanced technologies and experiences of the rest world. For 

developing countries in which few firms have well-established R&D operations, tapping into the 

existing world knowledge stock would seem to be a natural way of shortening the technology gap.  

Since China’ reform and opening up, the Chinese central government has been consistently 

emphasizing the importance of technology development and viewing technology development as 

an engine for the process of catching-up with advanced industrial economies and industrialization. 

Chinese central government has taken effective policy instruments to reform the mechanisms of 

science and technology and carried out the preferential policy measures towards encouraging 

foreign technology introduction from developed countries. As a result, in-house R&D and foreign 

technology transfer had a continual rise since 1978. For example, In 2007 R&D expenditures in 

China totaled�371 billion yuan which was about 50 times R&D expenditures in 1987. The ratio of 

R&D spending to GDP reached 1.49 percent in 2007, a substantial increase relative to the level of 

0.61 percent in 1987. Foreign technology transfer reached 25 billion U.S. dollars in 2007, while it 

was only 2.5 billion U.S. dollars in 1979 (Chinese National Bureau of Statistics, 2008). Now 

technological progress has become a critical ingredient for sustained economic growth in China. It 

is believed that over the long-term, China’s economic performance will ultimately depend upon its 

ability to acquire, adapt and innovate new technologies. 

Against this background, this research draws on previous studies to offer information bearing 

on two questions related to R&D, technology transfer and productivity growth, which are also two 

important topics that have attracted considerable attention in research on technology issues in 

advanced industrial countries. First, are R&D and technology transfer important factors in 

explaining the growth of Total Factor Productivity (TFP) at the industry level? Second, if R&D 

and technology transfer are important factors, how great are their impacts? In practice, the main 

evidence related to those questions consists of econometric estimates of the output elasticity and 

the rate of return to R&D and technology transfer. This research uses an industry-level data set of 

Chinese large- and medium-size manufacturing industries over the period of 1996–2006 to 

systematically investigate the contribution of each of these channels to industry-level performance. 

Through this empirical study, this research is expected to provide an explanation for Chinese 

economic growth and some suggestions for Chinese technological development. 
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In this paper we find that R&D has a significant contribution to productivity growth in 

Chinese manufacturing industries, whereas direct technology transfer, whether foreign or domestic, 

have no significant impacts on productivity growth. When the productivity growth is decomposed 

into technical efficiency change and technological progress, we find that the positive impact of 

R&D on productivity growth seems to work mainly through technical efficiency improvement. 

The remainder of the paper is organized as follows. Section 2 reviews the relative 

literatures .Section 3 explains the conceptual and econometric framework. Section 4 describes the 

data. The empirical results are presented in section 5. Section 6 estimates the effects of R&D and 

technology transfer on productivity decompositions. Finally, section 7 provides conclusions and 

the policy implications. 

 

2. Literature review 

 

The interest in econometrically assessing the R&D investments started in the early 1960s. 

The earliest research to investigate the effects of R&D on productivity centered on individual 

industries within manufacturing and especially on the agricultural sector (Minasian, 1962, 1969; 

Griliches, 1964; Mansfield, 1965). As time passed and more sources of data became available, 

later studies tended to broaden the samples by including more industries, many firms in a single 

industry, or many firms in many industries. These studies, by including the knowledge stock in the 

Cobb-Douglas production function, tried to identify the acceleration of productivity growth which 

occurs due to R&D investments; However, the conceptual framework was not satisfactorily 

developed until the late 1970s (Griliches, 1979). From then on, a large number of empirical 

studies of estimating the effect of R&D investments on productivity growth have emerged in 

many countries. The estimated magnitudes of the R&D contribution to productivity growth span a 

wide range depending on the aggregation level of data, the methodology and the period being 

considered: some studies have found that R&D’s effect on productivity is essentially zero, 

whereas others have found that its effect is substantial and that it exceeds that of other types of 

investment by a large margin. Most of the estimates, however, lie somewhere between the two 

extremes, and as a result, a consensus has formed around the view that R&D spending has a 

significantly positive effect on productivity growth, with a rate of return that is about the same 

size as or perhaps slightly larger than the rate of return on conventional investments. 

For studies on Chinese industries during the reform era, given the transitional nature of 

China’s industrial economy, a particular focus is on the impact of institutional reform on the 

performance of China’s industrial enterprises. Nevertheless, increasing interests have been 

attached to R&D and innovation, as well as their impacts upon industry performance in the 

Chinese manufacturing sector. Among the existing empirical studies, the econometric evaluation 

of the impact of China’s R&D on productivity has been a focus of analysis in recent years. Hu 

(2001) adopted a production function framework to analyze the impact of R&D on productivity 

using a cross section of innovative enterprises from Beijing, China. He found that private R&D 

has a strong impact on firm productivity and government R&D contributes indirectly to 

productivity by promoting private R&D. Hu and Jefferson (2004) used a firm-level dataset on 

large and medium-size industrial enterprises during the period of 1991-1997 in the Beijing area to 

find substantial and significant returns to R&D in the cross-section dimension. Based on a rich set 

of panel data covering the population of China’s large and medium-size manufacturing enterprises 
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during 1997-1999, Jefferson et al. (2006) found that the contributions of R&D expenditures to 

productivity are statistically significant and returns to industrial R&D appear to be at least three to 

four times the returns to fixed production assets.  

In the context of China’s opening up policy, the vast majority of the empirical literatures 

have emerged about the impacts of technology spillovers through foreign direct investment upon 

manufacturing industries’ performance. For example, Liu (2002) used industry-level data of 29 

manufacturing industries over the period of 1993–1998 in the Shenzhen Special Economic Zone 

of China to find that foreign direct investment has large and significant spillover effects in that it 

raises both the level and growth rate of productivity of manufacturing industries. However, it is 

especially noticeable that very few studies have paid attention to the relationship between direct 

technology introduction and productivity growth. In the existing literatures using China’s data, 

only Hu et al. (2005) examined the contributions of domestic R&D, foreign technology transfer 

and domestic technology transfer, as well as their interactions, to productivity, using a large data 

set for China’s large and medium-size enterprises during 1995 to 1999. The central findings of this 

research are that domestic R&D and foreign technology transfer have strong impacts on the 

productivity of industrial enterprises and the impacts of both domestic and foreign technology 

transfer on productivity are largely conditional on their interactions with in-house R&D.  

The above literatures that assess econometrically China’ R&D and technology introduction 

mainly use the firm level dataset. Moreover, shortcomings of the available data and the difficulties 

associated with the estimating methods make it difficult to identify with any precision the size of 

contributions that R&D and technology introduction make. By using an industry-level data set of 

Chinese large and medium-size manufacturing enterprises during the period of 1996-2007, this 

research will analyze the contributions of three technology acquisition channels, i.e. R&D, foreign 

and domestic technology transfer, to improving China’s industrial performance. Compared with 

the existing literatures, some academic contributions in this research are as follows.  

Firstly, on the basis of the expansion of Cobb-Douglas production function, not only the output 

elasticities but also the rates of return of R&D, foreign and domestic technology transfer will be 

estimated in this research. Meanwhile, Data Envelopment Analysis (DEA) will be used to 

decompose productivity growth of Chinese manufacturing industries into technical efficiency 

change and technological progress, and then the effects of three technology acquisition channels 

on Malmquist productivity index and its components will be re-estimated to verify the reliability 

of the production functions estimates. 

Secondly, the available data concerning real R&D expenditures are bedeviled by the lack of a 

suitable price index for R&D inputs. Fortunately, China Statistical Yearbook on Science and 

Technology provides the detailed data about R&D expenditures which are composed of 

compensation for laborers, raw material expenditure, expenditure on the purchase of fixed assets 

and other expenditure for R&D. Based on these data, a more reliable R&D price index can be 

constructed to deflate the nominal R&D expenditures, which will give us an opportunity of 

calculating with more precision the R&D’s contribution to productivity growth.  

Finally, a noteworthy issue in exploring the contribution of R&D to productivity is the 

so-called “double counting” problem. Given that a proportion of capital and labor belongs to the 

R&D department, R&D machinery and R&D employees should be subtracted from the ordinary 

capital and labor while calculating the output elasticity and rate of return to R&D. Nevertheless, 

the data used in the existing literatures are not always detailed enough to allow such corrections. 
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In this research, the data will be corrected by subtracting the employees and expenditures devoted 

to the R&D department from the total numbers of employees and capital. With double counting 

for R&D corrected, the estimation results will be more credible than those of ignoring double 

counting of R&D. 

 

3. Conceptual and econometric framework 

 

A common approach of innovation studies is to treat R&D within a production function 

framework as a factor of production, symmetric with physical capital, labor, and other inputs. The 

R&D input is most appropriately interpreted as a stock of knowledge constructed as the sum of 

discounted past R&D expenditures. The model used here is essentially the same as that employed 

by other scholars, except that the sources of knowledge are disaggregated into three parts: 

domestic R&D, foreign technology import and domestic technology transfer. 

The Cobb-Douglas production function is usually regarded as a starting point for most 

econometric studies of assessing the contribution of knowledge to productivity. In a particular 

industry, after accounting for time and industry differences, the production function is assumed to 

be the following: 

              ( ) ( ) ( ) i itR F D t u

it it it it it itQ AC L RS FS DS e
λ εγ γ γα β + +=                 (1) 

Where Q is the industry’s output, C is the industry’s stock of physical capital, and L is the 

industry’s labor input. RS, FS and DS represent the industry’s stocks of R&D, foreign technology 

import and domestic technology transfer respectively. The term A is a constant, t is a time trend, 

�captures the disembodied technical change. α, β are the elasticities of output with respect to 

physical capital and labor respectively, and γR, γF and γD are the elasticities of output with respect 

to three knowledge stocks respectively. ui captures unobservable effects which are unchangeable 

with time, and εit is an error term. 

As usual, to implement the estimation of the production function, Equation (1) can be 

rewritten in logs as: 

it i it it R it F it D it itq a t u c l rs fs dsλ α β γ γ γ ε= + + + + + + + +              (2) 

Where lower case letters denote the logarithms of variables. Under constant returns to scale with 

respect to the conventional measures of capital and labor, the sum of factor elasticities, µ=α+β, 

will be unity. For interpretive reasons, the equation can be rewritten so that the deviation from 

constant returns is measured explicitly, by subtracting labor from both sides of the equation (2): 

( ) ( ) ( 1)it it i it it it R it F it D it itq l a t u c l l rs fs dsλ α µ γ γ γ ε− = + + + − + − + + + +      (3) 

The coefficient of the logarithm of labor (µ-1) now measures the departure from constant 

returns. If this coefficient is significantly different from zero, constant returns to scale for capital 

and labor can be rejected. Accounting for the possible effects of the restriction of returns to scale 

on the estimates of γR, γF and γD, we shall report both the estimates obtained with and without 

imposing constant returns to scale. 

Estimating equations (3) requires very few assumptions about the production function and 

provides results that have a straightforward interpretation. Meanwhile, in the process of estimating 

the parameters of R&D and technology transfer, several econometric problems are worth noticing.  
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First, in estimating equation (3), we face a possible econometric problem concerning the 

potential correlation between the independent variables and unobservable effects. In our panel data, 

ui represents time-invariant industry specific characteristics which may be corresponded to 

permanent differences in production technology and economic environment. However, the 

unobservable industry specific characteristics may be quite likely to correlate with the production 

inputs on the right hand side of equation (3). For example, industries with high technologies may 

also sustain greater than average expenditures on R&D and technology purchases. The ordinary 

least square estimates of the coefficients would then be subject to omitted-variable 

misspecification and bias. Several methods exist to correct for this bias. The habitual and 

convenient way to abstract from the ui’s is to compute the within regression using the deviations 

of the observations from their specific industry means, which is equivalent to including industry 

dummy variables in the total regression. Another substitute way is to use the first difference 

estimation in which the industry specific characteristics can be eliminated from the right hand side 

of equation (3). The first difference regression is as follows: 

   ( ) ( ) ( 1)it it it it it R it F it D it itq l c l l rs fs dsλ α µ γ γ γ ε∆ − = + ∆ − + − ∆ + ∆ + ∆ + ∆ + ∆    (4) 

Second, multicollinearity is another possible econometric problem associated with equation 

(3). This problem is engendered by the fact that the variables of interest move together over time 

so that the estimates of the parameters tend to have large estimated variances and little statistical 

significance, thus it is difficult to identify accurately the contribution of each input. By contrast, 

since the first-difference of the logarithm of variable is approximately equivalent to the yearly 

growth rates of the variable, which can greatly reduce the correlations among independent 

variables
1
, as well as control for permanent differences across industries, we are prone to use the 

first-differenced equation, i.e. (4), to evaluate the contribution of R&D and technology transfer to 

productivity growth. 

Third, the inputs in production function may not be completely exogenously determined. 

Technical knowledge and productivity are likely to be mutually dependent—output is a function 

of, among other things, technical knowledge, and technical knowledge is a function of past output 

and expected future output, e.g. higher output leads to higher R&D expenditures and technology 

transfer. Under these circumstances, OLS-based estimates of the coefficients on knowledge will be 

biased. The solution to the simultaneity is the use of simultaneous-equation techniques or 

instrumental variables (IV) estimation. However, they are not always applied to explore the 

contribution of knowledge because the data required to use them do not always exist and the 

exogeneity of these instruments is then questioned raising other problems (Griliches, 1986). For 

this reason, we do not wipe out the possible bias induced by simultaneity. 

Finally, when using equation (2) to (4) to evaluate the output elasticities, one of the most 

difficult tasks is to measure the stocks of the three knowledge capital. To avoid this problem, some 

authors have chosen to use an equation that yields an estimate of the rate of return (ROR) to 

knowledge instead of the knowledge elasticities. The specification is a transformation of equation 

(4), which assumes that the marginal products of knowledge across industries are equal.  

                                                        
1 In our database, the correlations between the corresponding variables are as follows: cor(LnRS, LnFS)=0.81, 

cor(LnRS, LnDS)=0.85, cor(LnFS, LnDS)=0.78; and cor(∆LnRS, ∆LnFS)=0.13, cor(∆LnRS, ∆LnDS)=0.25, 

cor(∆LnFS, ∆LnDS)=0.09. 
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Since by definition the elasticity of R&D stock γR is equal to
Q RS

RS Q

∆
∆

, term R rsγ ∆ can be 

rewritten as
Q RS RS Q RS

RS Q RS RS Q

∆ ∆ ∆ ∆
=

∆ ∆
. The fraction /Q RS∆ ∆ is the marginal product of 

R&D stock (termed as ρR) which is interpreted as the rate of return to R&D. In order to estimate 

ρR, the variable RS∆  (representing the change of R&D stock) is needed. Most of the previous 

studies have usually assumed that R&D capital does not depreciate so that the difference of R&D 

capital ( RS∆ ) is equal to the current R&D expenditures (termed as R)
2
, i.e. RS R∆ = , then the 

term R rsγ ∆  can be rewritten as ( / )R R Qρ . Similarly, the terms F fsγ ∆ and D dsγ ∆  in equation 

(4) can also be rewritten as ( / )F F Qρ and ( / )D D Qρ respectively, where F and D represent the 

expenditures on foreign and domestic technology transfer respectively, and ρF and ρD represent the 

rate of return to the corresponding variables. Therefore, the equation (4) can be transformed into 

the following form: 

( ) ( ) ( 1) ( ) ( ) ( )it it it it it R it F it D it it

R F D
q l c l l

Q Q Q
λ α µ ρ ρ ρ ε∆ − = + ∆ − + − ∆ + + + + ∆   (5) 

Compared with equation (4), the main advantage of equation (5) is that the relevant variables 

on the right hand side are the intensities of R&D and technology transfer to output which are 

easily measured. Meanwhile, it must be made in mind that there are at least two potential 

problems with this rate of return approach (Hall and Mairesse, 1995). First, the rate of return 

estimated using equation (5) is a gross rate of return. To obtain the net rate of return we need to 

subtract the (unknown) depreciation rate for R&D and technology transfer; thus the problem of 

depreciating incurred when estimating the stocks of R&D and technology transfer is not really 

avoided. Second, the timing of the relationships among R&D, technology transfer and 

productivity growth is not clear, so applying various lag structures of variables in the regression 

seems to be appropriate. Fortunately, Mairesse and Sassenou (1991) in their survey point out that 

R&D expenditures by firms is very stable over time, most of the variation is in the cross-section. 

In this paper we experiment with the timing of both the three technical variables and sales revenue 

and confirm that it has little impact on the regress results and the intensity coefficients do indeed 

seem to be unbiased. 

Taking the advantages and disadvantages of the output elasticity and the rate of return 

method into account, we will use the two different methods to evaluate the effects of the three 

technology acquisition channels on productivity growth. 

 

                                                        
2
According to the Perpetual Inventory Method (PIM) which will be described in section 3 of this paper, 

1 1 1 1
(1 )

it it it it it it it it
RS RS RS R RS RS R RSδ δ− − − −∆ = − = + − − = − .When the depreciation rate δ equals to zero, 

then
it itRS R∆ = . 

 



 9 

4. Data and variables 

 

4.1 Data 

The main data for this research, which span the population of Chinese large and 

medium-sized manufacturing enterprises
3
, are drawn from the China Statistical Yearbook on 

Science and Technology published by China statistics press. Large and medium-sized enterprises 

dominate Chinese industry, in 2006 accounting for 64 percent of China’s total industrial value 

added. In addition, the correlative price indexes are necessary in order to eliminate the influences 

of price fluctuation on output and inputs. Price indexes are drawn from Chinese Statistical 

Yearbook that National Bureau of Statistics of China (NBS) reports each year. Our sample spans a 

period of eleven years from 1996 to 2006 and includes data for 29 two-digit manufacturing 

industries every year; therefore a balanced panel data which is composed of 319 observations is 

constructed. 

In our sample, the R&D expenditure is measured by intramural expenditure on technical 

development which refers to the actual expenditure made for scientific and technological activities 

by the survey units during the reference period, including service expenses, professional expenses 

for scientific research, management expenses for scientific research, purchases of fixed assets with 

investment in non-capital construction, capital construction expenditure for scientific research and 

others. Foreign (domestic) technology transfer is measured by an industry’s expenditure on 

disembodied technology purchased from foreign (domestic) providers, such as patent licensing fee 

and payment for blueprints of technology and so on. 

4.2 Variables 

4.2.1 R&D stock and technology transfer stock 

In order to estimate the elasticities of output with respect to R&D, foreign and domestic 

technology transfer, stock measures for each of the three technology variables are needed. 

Knowledge accumulated through these technological activities in the past generates benefits in the 

present and the future. However, knowledge depreciates and becomes obsolete not only because 

new knowledge replaces old knowledge but also because the appropriability of knowledge 

decreases as the diffusion of that knowledge takes place with the passage of time. Following the 

methods of Griliches (1979), by using a perpetual inventory model like that commonly used for 

physical capital, we construct the stocks of R&D, foreign and domestic technology transfer as the 

discounted sum of past expenditures on respective activity. 

We first construct the R&D capital stock. R&D stock has been viewed as a measurement of 

the current state of technical knowledge, determined, in part, by current and past R&D 

expenditures. The perpetual inventory method defining R&D capital stock is the following: 

                          , 1(1- )it it i tRS R RSδ −= +                          (6) 

Where RS is the R&D stock for industry i in year t; δ is the depreciation rate of R&D capital, and 

R is industry i’s gross R&D investments in year t. To implement the equation, we must first 

calculate the price index for R&D expenditures, the initial R&D stock and the depreciation rate. 

As Mansfield (1984) points out, the available data concerning real R&D expenditures are 

                                                        
3 To define large and medium-sized enterprises, China’s National Bureau of Statistics (NBS) uses either of two 

industry specific criteria: annual production capacity or original vale of the productive fixed assets. For further 

elaboration of the criteria used to classify firm size, see the web site of the China’s NBS 

(http://www.stats.gov.cn/english/statisticalstandards/). 
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bedeviled by the lack of a suitable price index for R&D inputs. The usual R&D price deflator used 

in the past literatures is either the GNP deflator or a weighted average (with almost equal weights) 

of the consume price index and assets price deflator. Fortunately, China Statistical Yearbook on 

Science and Technology provides the detailed data for R&D expenditures which are composed of 

compensation for laborers, raw material expenditure, expenditure on the purchase of fixed assets 

and other expenditure for R&D. Based on these data, we construct the R&D price index as the 

following:  

R&D price index = (compensation for laborers/R&D expenditures) ×consumer price index+ 

(raw material expenditure/R&D expenditures) × row material price index+(expenditure on the 

purchase of fixed assets/R&D expenditures) × fixed assets price index+(other expenditure for 

R&D/R&D expenditures) × other expenditure price index.  

The yearly price indices for consumer, row material and fixed assets are from China 

Statistical Yearbook (CSY). It is a pity that CSY does not provide the relevant price indices for 

each manufacturing. In addition, because of the implication of other expenditure for R&D is not 

clear, we represent other expenditure price index by the arithmetical average of consumer price 

index, row material price index and fixed assets price index. Using the constructed R&D price 

index to deflate the nominal R&D expenditures, we get the real R&D expenditures for 29 

manufacturing industries during the year of 1996-2006. 

As for the initial R&D stock, with the assumption of pre-sample R&D expenditures growing 

at a rate of g, the R&D stock at the beginning of the year is defined by the following equation:  

      

2 2

1 1 0 1 1 1 1

1 1

0

1 1
(1- ) (1 ) ( )

1 1

1 1
( )
1

i i i i i i i

S

i i

S

RS R R R R R R
g g

g
R R

g g

δ δ
δ δ

δ
δ

−

∞

=

− −
= + + − + = + + +

+ +

− +
= =

+ +∑

L L

      (7) 

Assuming that a depreciation rate of 15 percent of R&D stock which has been most 

frequently used previously in this type of estimation and a pre-sample growth rate of 5 percent in 

real R&D expenditures
4
, the initial R&D stock is 5.25 times the R&D expenditures in 

1996((1+0.05)/(0.15+0.05)=5.25). On the basis of the initial R&D stock and equation (6), we can 

compute the R&D stocks of the 29 manufacturing industries during 1996-2006. 

Similarly, the stocks of foreign and domestic technology transfer can be computed by the 

same method as the measurement of the R&D stock. The difference is that the expenditures on the 

two technology transfers are deflated by the fixed assets price index because there are no detail 

data on the compositions of technology transfers in the statistical yearbook. Besides this, with the 

assumption of the depreciation rate of 15 percent and the pre-sample growth rate of 5 percent in 

expenditures on technology transfers, the perpetual inventory method (equation (6)) can be in the 

same way used to compute the stocks of the two technology transfers. 

4.2.2 Output, labor and capital 

The output at constant price is constructed by deflating the sales revenue of each 

manufacturing during 1996-2006 by ex-factory price index of industrial products. Although 

measuring value added instead of sales revenue is more appropriate, the required data are not 

available in our database. As Mairesse and Hall (1996) find, however, the elasticity of R&D is not 

                                                        
4 To verify the stability of estimation results, we will change the depreciation rate and the pre-sample growth 

rate of expenditures and report the results of experimentation with the assumption of different parameters in 

section 4 of this paper. 
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seriously biased when sales revenue is used instead of value added. Another area of potential 

distortion is the immeasurable improvements of output, i.e. better quality, increased product 

variety, etc. Since the price indices of China statistical agencies fail to fully account for these 

intangible improvements, our output record will be underestimated and the R&D elasticity 

downward biased. Labor is measured simply by the total number of employees because there is no 

available information on the labor working hours of industry. 

Our measure of physical capital (C) is the original value of equipment instead of fixed assets 

which are not available in our database, so the physical capital will be underestimated and 

accordingly its elasticity may be downward biased. Growth theory suggests that capital input must 

be a measure of “productive stock”, implying that its efficiency declines as it get old. The usual 

approach of measuring physical capital stock is the perpetual inventory method which has already 

been used in the computation of knowledge stock, i.e. , 1(1- )it it i tC I Cσ −= +  

and [ ]1 1 (1 ) /( )i iC I d dσ= + + , where C is physical capital stock, I is the expenditures on 

physical capital, σ is the depreciation rate, and d is the pre-sample growth rate of physical capital. 

The key parameters of computing the equipment stock in this paper are set in the following: The 

value of equipment is deflated by fixed assets price index, the depreciation rate of equipment is 

assumed as 15 percent which is computed by zhang et al. (2008), and the pre-sample growth rate 

of equipment is set to 5 percent (i.e., the initial stock of equipment is 5.25 times the expenditures 

on equipment). Then equipment stock can be computed by using the perpetual inventory method 

described above. 

Another noteworthy issue in exploring the contribution of R&D to productivity is the 

so-called “double counting” problem which originated with Schankerman (1981) and has been 

echoed by Cuneo and Mairesse (1984) and Griliches and Mairesse (1984). Given that a proportion 

of capital and labor belongs to the R&D department, we should subtract R&D machinery and 

R&D employees from the ordinary capital and labor. Nevertheless, the data are not always 

detailed enough to allow such corrections. In our database, we have the data on R&D employees 

but no data on R&D machinery, so the data is corrected by subtracting the employees devoted to 

the R&D department from the total numbers of employees. After correcting double counting for 

R&D employees, it is usually believed that the estimation results will be more credible than those 

of ignoring double counting of R&D, therefore we will mainly report the results of data corrected 

in the following text. 

4.3 Descriptive statistics 

When calculating the average ratios of the expenditures on R&D, foreign and domestic 

technology transfer to sales revenue across 29 two-digit manufacturing industries during 

1996-2006, as listed in table 1, we find several patterns. As a whole, most manufacturing 

industries, other than tobacco processing industry and printing and record medium reproduction 

industry, invest far more in R&D than in technology transfer, which reflects that R&D is the main 

foundation of innovation capacity in Chinese industry. From the R&D intensity in table 1, we also 

find that the huge differences of innovation capacity among manufacturing industries: R&D tends 

to be relatively more intensive in technologically advanced industries, such as machinery, electric 

equipment, medical and pharmaceutical products,  electronic and telecommunications equipment, 

etc., in which the R&D intensities are more than 2 percent. Nevertheless, the R&D intensities in 
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those traditional industries, i.e. leather, food processing, petroleum processing, and tobacco, are 

less than 0.5 percent. We also find that foreign technical providers make a great role in shaping 

industry’s innovation capacity; however, in sharp contrast to their foreign counterparts, domestic 

suppliers seem to be an insignificant source of technology transfer.  

 

[Insert Table 1 Here] 

[Insert Table 2 Here] 

 

Table 1 also summarizes the results of the estimation of the three technology stocks per firm 

in 2006. The absolute size of R&D stock per firm is large in ferrous metals, transport equipment 

and tobacco processing industries, whereas it is very small in the furniture, leather and garments 

industries, which reflects the great differences in R&D investments of different industries. In 

addition, the stock of domestic technology transfer per firm is much less than that of foreign 

technology transfer per firm which in turn is less than R&D stock per firm for most of industries.  

Table 2 presents the time mode of three technical variables for the period of 1996-2006. R & 

D intensity in Chinese manufacturing industry has a continually rising trend during 1996-2001, 

but decreases during 2001-2003, and then tends to increase after 2003. The intensity of foreign 

technology transfer tends to decline; meanwhile, the intensity of domestic technology transfer 

only has a little change during the period of 1996-2006. The time pattern of the three technical 

stocks per firm is basically the same as that of three technical intensities. These changes reflect 

that in recent years the indigenous innovation capacity increases gradually and dependence on 

foreign technologies tends to reduce. 

 

5. Empirical results 

 

    This section analyzes the impacts of R&D and technology transfer on productivity growth. 

We first estimate the output elasticities of the three technical stocks using equation (4), and then 

compute their rates of return using equation (5). 

5.1 Elasticity estimates 

Table 3 shows the results obtained for the production function estimates when constant 

returns to scale is not imposed by using different estimation techniques. In order to check the 

estimates’ robustness, column (1), (2) and (3) of table 3 report the regression estimates of R&D, 

foreign and domestic technology transfer respectively, and column (4) of table 3 reports the 

estimates with the three technical stocks included in a regression. In avoiding double counting of 

R&D employees we distinguish between the employees working with R&D production and other 

workers as two separate labor inputs. The R&D personnel have been subtracted from the total 

labor because the latter includes both R&D- and non-R&D personnel. Column (5) of table 3 also 

gives the estimates with the measure of labor which has not been corrected for double counting of 

R&D employees. In addition, to compare the effects of the stocks and expenditures of the technical 

variables on productivity growth, column (6) of table 3 presents the estimates with the technical 

expenditures used as the independent variables. Table 4 shows the same estimates in format when 

constant returns to scale imposed. The key results reported in table 3 and 4 can be summarized as 

follows. 

The results for the capital to labor ratio for all estimation regressions are not altered 
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essentially. The coefficient on the labor variable is not significantly different from zero for all the 

regressions in table 3, which shows that the hypothesis of constant returns to scale is accepted for 

the first-differenced estimates. The corrections for double-counting of R&D employees tend to 

increase the R&D capital coefficients across the columns of table 3 and 4, which are consistent 

with the studies of Schankerman (1981) and Cuneo and Mairesse (1984) who find that the “double 

counting” corrections increase the R&D elasticity. We also find that the coefficients with the 

measured stocks used as dependent variables are obviously larger than those with the expenditures 

used as dependent variables. The most important finding from table 3 and 4, in any case, is that the 

R&D capital coefficients remain fairly high and statistically significant and the coefficients on 

foreign and domestic technology transfer are quite small and insignificant whether the constant 

returns to scale imposed or not. 

 

[Insert Table 3 Here] 

[Insert Table 4 Here] 

 

A common result across the regressions, i.e., column (1) and (4) of table 3, is that the 

estimates on R&D are positive and quite significant, with the results indicating that R&D has a 

significant impact on productivity growth. Specifically, the estimate of R&D elasticity is about 

0.15 when the R&D stock is separately included in the regression (column 1 of table 3), while it 

decrease to 0.14 when the three technical variables are all included in the regression (column 4 of 

table 3). The R&D coefficients have almost similar changes when constant returns to scale 

imposed (table 4). As a whole, the coefficients of R&D remain stable in magnitude. The findings 

are consistent with similar studies carried out in other countries confirming the positive and 

statistically significant correlation between R&D and output. Our findings are also consistent with 

the studies using Chinese firm data which affirm the significant role of R&D for productivity (Hu, 

2001; Hu and Jefferson, 2004; Hu et al., 2005; Jefferson et al., 2006). Despite the estimates of the 

R&D elasticity from those studies vary on the basis of the sample, the central tendency which is 

cited frequently runs from about 0.10 to about 0.20 (Griliches, 1988; Mairesse and Sassenou, 

1991). Our estimate of the R&D elasticity of around 0.15 lies in the range of central tendency. The 

organizational culture of R&D- intensive firms expedites the discovery of new knowledge, 

practices and innovations that favor productivity performance; as a result, productivity growth 

should be amplified when R&D expenditures are raised. At the same time, we should highlight 

once again a fact which has already been pointed out by other previous studies (Mairesse and 

Sassenou, 1991): the estimates in the first-differenced, which control for permanent differences 

across industries, usually have an R&D output elasticity which is much smaller than that in the 

cross-section estimates. Because the cross-section estimates neglect the differences across 

industries which are correlated with the presence of R&D capital, we regard the first-differenced 

estimates as more reliable parameters. 

Although the estimates on R&D are statistically significant, those on foreign technology 

transfer are statistically insignificant. From column (2) and (4) of table 3 and 4, we can see that the 

coefficients of the foreign technology transfer are positive but not significant, showing that the 

market-mediated technology imports have no significant impacts on productivity growth. At first 

sight the insignificant contribution of foreign technology transfer to productivity may be surprising, 

because along with china’s institutional reform and economic opening, many technologically 
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lagging firms learn to innovate by first imitating technologies created in developed countries. For 

China in which few firms have well-established R&D operations, utilizing the advanced 

technologies of developed countries would seem to be a natural way of shortening the technology 

gap. However, technological market failures that compromise the ability to appropriate returns to 

technology transfer reduce the volume and sophistication of technologies that can be transferred 

through markets (Caves, 1996). More importantly, Chinese firms usually pay much attention to 

hardware imports that do not match the skill level of this country and neglect software introduction. 

In the meantime, the absorptive capacity to technology has been ignored by Chinese firms in the 

process of purchasing foreign technologies. For example, according to Gilboy (2004), Chinese 

firms tend to import technology by purchasing foreign manufacturing equipment, often in 

complete sets such as assembly lines. Throughout the 1980s and 1990s, such hardware accounted 

for more than 80% of China’s technology imports, whereas licensing accounted for only 9%, 

“know-how” services 5% and consulting 3%. Over the last decade, large- and medium-sized 

Chinese industrial firms have spent less than 10% of the total cost of imported equipment on 

indigenizing technology, which is much lower than the average for industrial firms in OECD 

countries (about 33%). The unreasonable structure of technology imports and absence of 

absorptive capacity in Chinese industrial firms substantially limit the contribution of foreign 

technology imports to productivity growth. 

The estimated coefficients of domestic technology transfer are also statistically insignificant, 

whether we impose constant returns to scale in the production function and whether we correct the 

double counting of R&D employees in the labor input. This phenomenon can be explained as 

follows. Compared with the technologies in developed countries, the technological level in China, 

as a whole, is backward. The technologies are characterized by competitiveness and exclusiveness 

among domestic industrial enterprises, which cause enterprises to take effective measures to 

protect their own core technologies. Due to the need for technological confidentiality, one 

enterprise is unwilling to sell its technologies to the other domestic enterprises so as to there is 

very few technological transactions among domestic enterprises. In addition, the immature and 

imperfect technology market in China also limits technology transfer among domestic enterprises. 

The above interpretations can be verified by the data reported in table 1 and 2 which show that the 

intensity of domestic technology transfer is much smaller than that of R&D and foreign 

technology transfer. In a word, both the technology competitiveness among domestic enterprises 

and the imperfect technology market in China cumber the domestic technology exchanges, which 

result in the insignificant contribution of domestic technology transfer to productivity growth. 

5.2 Rate of return estimates 

Because of the difficulty of measuring technical stock, an alternative approach to evaluating 

the productivity of technology, i.e. the rate of return method, is often used. The rate of return 

method actually estimates the correlation between the growth rate of labor productivity and the 

technical intensities which are denoted as the ratio of contemporaneous technical variables to sales 

revenue in this paper. The results of estimating equation (5) are shown in table 5 with constant 

returns to scale not imposed, similar estimates in format are reported in table 6 with constant 

returns to scale imposed.  

As we can observe in the first column of table 5, with constant returns to scale not imposed, 

the coefficient on the intensity of R&D expenditures is about 1.87 which is statistically significant 

at the 5 percent level of significance and it decreases to about 1.86 in column (4) where the 
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intensities of technology transfer are included in the regression. When constant returns to scale is 

imposed in the production function (table 6), the coefficient of the R&D intensity is around 1.78 

whether other technical variables are included in the regression or not. Obviously, the estimated 

rate of return to R&D with CRS not imposed is higher than that with CRS imposed. Another 

finding, as can be observed in column (4) and (5) of both table 5 and 6, is that the magnitude of 

the rate of return to R&D keeps almost unchanged according to whether the labor used to produce 

R&D is removed from the labor inputs in the production function. 

Table 5 and 6 also reveal that while the intensity of R&D is a significant determinant of 

productivity growth, the intensities of foreign and domestic technology transfer are not: the 

coefficients of those variables are quite insignificantly different from zero across the columns of 

table 5 and 6, which are consistent with the findings of the insignificant impacts of technology 

transfer stock on productivity growth contained in the aforementioned results. In a word, we do 

not find a significantly positive relationship between the productivity growth and technology 

transfers whether we use either the output elasticity or the rate of return method.  

 

[Insert Table 5 Here] 

[Insert Table 6 Here] 

 

It is especially noticeable that the estimate of the rate of return of 1.78-1.87 to R&D 

expenditures is strikingly high. The range of the estimated rate of return to R&D in the previous 

literatures runs from zero to nearly 0.60, with a central tendency between 0.20 and 0.30 (Griliches, 

1988; Mairesse and Sassenou, 1991). Our estimate of the rate of return to R&D is much higher 

than that of the previous studies using the database in developed countries, but similar to Hu and 

Jefferson’s (2004) estimate of 1.64 for Chinese machinery industry and lower than 1.95 for 

Chinese chemical industry. They are also similar to Mansfield’s (1980) estimate of 1.78 and 

substantially lower than Link’s (1981) estimate of 2.31 of rate of return to basic research for the 

US manufacturing sector. 

Why is the estimated rate of return to R&D in Chinese industry so high? We can provide 

some preliminary arguments according to the possible econometric problems in the equation. 

Firstly, we note that R&D intensity can be defined either as R&D over sales revenue or as R&D 

over value added. Since sales revenue is much higher than value added, the first ratio is 

considerably smaller than the latter which amplify the estimated rate of return to R&D. Using 

value added which is unfortunately unavailable to us instead of sales revenue may attenuate the 

rate of return to R&D. Secondly, there may be a problem of endogeneity of R&D intensity in 

equation (5). In principle, we should use all of the predetermined variables in the estimation 

regression; however, few variables are likely to be truly exogenous given the available data to us. 

Failing to resolve the possible endogeneity issue may result in the upward bias of the estimates of 

R&D returns.  

Another convictive explanation for the strikingly high estimates of R&D returns is that our 

estimates by using the industry-level data capture the social return to R&D which is defined as 

including both the return earned by the original innovator and any gains that spill over to other 

firms not involved in the R&D effort. Scherer (1982, 1984) believes that it is important to follow 

R&D from industry of origin to industry of use, as many firms “purchase” R&D from other firms 

implicitly when buying certain products and services. For each industry, R&D inputs from other 
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industries are inputted through the use of a technology flow matrix based on information on 

industries of origin and use of inventions culled from patent data or input-output flows between 

industries. If spillovers to R&D exist within an industry, then the estimated return to R&D will be 

higher when computed using industry-level rather than firm-level data. According to this view, 

our estimated return to R&D using industry-level data includes not only the impact of R&D from 

one’s own industry on productivity growth but also the impact of “inter-industry technology 

flows” on productivity growth. Given that the estimates of the social return to R&D average more 

than 100 percent in the previous productivity literatures, our estimates of return to R&D seem to 

be not too surprising. 

5.3 Robust check 

We investigate the robustness of the above estimates by experiment with various ways of 

measuring the technical stock and physical capital stock. To test the sensitivity of the estimates of 

R&D and technology transfer to the different parameters assumption, we recalculate the 

regression using both the output elasticity and the rate of return method. To save space we only 

report the estimates with constant returns to scale imposed and the double counting of R&D 

employees corrected. The estimates for output elasticity and the rate of return are reported in table 

7 and 8 respectively. 

When the depreciation rate of R&D is set to 25 percent which is the high end of the orders of 

magnitude obtained by Pakes and Schankerman (1984) using patent renewal data and applied by 

Hall and Mairesse (1995) in their empirical study, the output elasticity of R&D is about 0.14 

(column 1 of table7).When the pre-sample growth rate in R&D expenditures is set to 15 percent, 

the elasticity of R&D is around 0.13 (column 2 of table7). While the depreciation rate and the 

pre-sample growth rate of expenditures are set to 25 percent and 15 percent respectively, the 

elasticity of R&D is slightly decreased to 0.12(column 3 of table7). Although one may expect that 

the choice of the R&D depreciation rate�would significantly affect the R&D elasticity, it does not. 

Many researchers, such as Griliches (1980) and Harhoff (1998), have tried different depreciation 

rates (10, 15, 20 and 30%) and find that R&D elasticity remains stable. In this paper using a 

higher depreciation rate when constructing R&D capital stocks makes little difference to the 

estimates. In the same way, the different choice of the pre-sample growth rate of R&D 

expenditures also does not affect the estimates significantly. In table 7 we also find that with the 

assumption of the different parameters, the coefficients of technology transfer, whether purchased 

from foreign and domestic, are still statistically insignificant, showing the stability of our 

estimates. 

Other parameters that can affect the estimation results are the misspecification of the 

equipment stock variable. With the assumption of the 15 percent of depreciation rate of 

equipment, using a 15 percent of pre-sample growth rate for equipment instead of 5 percent, we 

recalculate the regression and find that the elasticity of R&D increases to 0.17(column 4 of table 

7) which is higher than the above estimates but the difference is not large. In the assumption of 

15 percent of pre-sample growth rate for equipment we also estimate the rates of return to R&D 

and technology transfer (table 8). The estimated marginal product of R&D is 1.96 which is 

higher than the aforementioned estimate of 1.78 when constant returns to scale imposed. We also 

find that the estimated rates of return to technology transfer, whether foreign and domestic, are 

still insignificant. 
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[Insert Table 7 Here] 

[Insert Table 8 Here] 

 

As a matter of fact, using all the possible parameters, we have tried a number different ways 

of measuring these variables but too little effect. The various measures we tried turn out to be very 

good substitutes for each other and the choice between them has little practical import. The 

resulting differences in our estimates, even when they are statistically significant, are nonetheless 

quite small and not very meaningful. In particular, they do not substantially alter the order of 

magnitude and the significance of the coefficients of our interest, γ and ρ��

 

6. Estimating the effects of R&D and technology transfers on productivity 

decompositions 

 

We have thus far examined the effects of R&D and technology transfer on the productivity 

growth of manufacturing industries using Cobb-Douglas production function estimation. Now we 

use Data Envelopment Analysis (DEA) to decompose total factor productivity into technical 

efficiency change and technological progress, and then run regressions to examine the 

contributions of R&D and technology transfer to the Malmquist productivity index and its 

components. 

The output-based Malmquist productivity change index is commonly expressed in the 

following form: 
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=  

 
    (8) 

Where y is the output and x is the input vector of the manufacturing being evaluated. DO is an 

output distance function. The distance function is the inverse of the out-oriented efficiency score, 

which can be calculated by solving different linear programming problems (Fare et al., 1994). The 

superscripts on DO indicate the time period within which the efficiency scores are calculated. The 

superscripts on x and y indicate the time period of the data used in the calculation of the efficiency 

scores. The ratio outside the brackets on the right-hand side of equation (8) represents the change 

in technical efficiency from period t to t+1, and the bracketed term in (8) captures the geometric 

mean of the shift in production frontier. As a result, the Malmquist index is decomposed into the 

technical efficiency change and the technological change of the industry. The value of the 

Malmquist index more than one signifies the improvement in productivity from t to t+1. 

    To examine the effects of R&D and technology transfer on the Malmquist productivity index, 

we run the regression: 

                  it R it F it D it itM rs fs dsλ ϕ ϕ ϕ ω= + ∆ + ∆ + ∆ + ∆                  (9) 

Where M represents the Malmquist productivity index, and ϕ represents the coefficient estimates. 

Since the Malmquist index indicates the annual change of productivity growth, we transform the 

explanatory variables, i.e. R&D, foreign and domestic technology transfer, into first differences.  

The regression results are reported in the first column of table 9. It can be seen that R&D is 

the most statistically significant factor affecting the Malmquist productivity index, and that 
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technology transfers (foreign and domestic) are not associated with productivity growth in a 

statistically significant manner, which are consistent with the estimation results obtained by using 

both the output elasticity and the rate of return methods described above. 

 

[Insert Table 9 Here] 

 

The decomposition of the Malmquist index provides a way of measuring the channels of 

R&D and technology transfer affecting productivity growth. In column (2) and (3) of table 9, we 

report the results of similar regressions of the technical efficiency change and technological 

progress, i.e., a shift of the production frontier, respectively. It can be seen that R&D is highly 

statistically significant for technical efficiency change but not for technological progress. In 

contrast, foreign technology transfer has a statistically significant positive effect on technological 

progress but not on technical efficiency change. The estimate on domestic technology transfer is 

still not statistically significant in any of the regressions in table 9.  

From the above observation, we know that the significant role of R&D in improving 

productivity growth is mainly attributable to the contributions of R&D to technical efficiency. 

Under the circumstance of the relatively backward technology level in Chinese manufacturing, 

indigenous R&D can greatly improve the technical efficiency of each manufacturing; however, it 

can not shift the production frontier of the manufacturing sector upward markedly. In addition, 

basic research in Chinese manufacturing sector is relatively weak and as a result it can not 

substantially support the development of applied research, which further cumbers the shift of 

production frontier of the manufacturing sector. The unreasonable structure of R&D investments 

in manufacturing sector may be another complementary interpretation. In any case, 

notwithstanding working only through technical efficiency improvement not through 

technological progress, R&D still greatly facilitate the productivity growth of manufacturing 

sector, which is consistent with the estimates obtained by using either the output elasticity or the 

rate of return method. 

Although foreign technology transfer does not guarantee a higher rate of productivity growth 

and technical efficiency change, it affects technological progress significantly. Chinese 

manufacturing enterprises usually focus on large-scale introduction of foreign equipment and 

production lines, which may result in the upward shift of the production frontier; however, 

because of the lack of software support and technical absorptive capacity, the technical efficiency 

does not improve correspondingly. To integrate the two effects, we can find from column (1) of 

table 9 that foreign technology transfer has no statistically significant impacts on the Malmquist 

productivity index. 

 

7. Conclusions 

 

By an industry-level data set of Chinese large- and medium-size manufacturing enterprises 

over the period of 1996–2006, we investigate the impacts of three technology acquisition channels, 

i.e. in-house R&D, domestic technology transfer and foreign technology transfer, on the industry’ 

productivity growth using both the output elasticity and the rate of return method. With the 

different assumptions (such as constant returns to scale in the production function, the 

depreciation rate used to compute the technical capital stock, and the choice of whether to include 
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an adjustment for double counting of R&D employees in the labor inputs), we find that there is 

strong evidence for the significant contribution of R&D to productivity growth in Chinese 

manufacturing industries, whereas technology transfer, whether foreign or domestic, have no 

significant impacts on productivity growth. When the productivity growth is decomposed into 

technical efficiency change and technological progress, we find that the significantly positive 

impact of R&D on productivity growth seems to work mainly through technical efficiency 

improvement rather than through technological progress. 

The contribution of R&D to productivity growth means that creating a favorable innovation 

environment is of great significance for China’s sustainable economic growth. China’s 

government should further take effective policy instruments to reform the mechanism of science 

and technology activities, to improve the intellectual property system, and to strengthen the 

protection of intellectual property rights, which will substantially stimulate Chinese enterprises to 

investment in R&D. After all, it seems to be impossible to introducing the advanced and core 

technologies from developed countries by means of direct technology transactions. International 

experiences have also showed that the fundamental driving force of innovation stems from 

national enterprises. No other than base upon domestic innovation can China initiatively grasp the 

adjustment of economic structure and transformation of the economic growth pattern.  

At the same time, under the circumstance of economic globalization, developing countries 

should also pay much attention to exploit and absorb the advanced technical achievements in 

developed countries. Over the past two decades, Chinese government has carried out the 

preferential policy measures towards encouraging foreign direct investments and introduction of 

foreign technologies from developed countries. However, due to the absence of absorption 

capacity to imported technologies and ignorance of the software support, direct foreign technology 

introduction does not make corresponding contributions to the productivity growth in Chinese 

manufacturing industries. The introduction of foreign technologies in the next step should keep to 

the features of resource endowments and the principle of comparative advantages in China. It is 

only appropriate technology introduction that will ultimately enhance China’s productivity and 

economic performance. 
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Table 1  

Technology intensity and technology stocks in manufacturing sectors  

 R/Y F/Y D/Y  RS/N FS/N DS/N 

 Average1996-2006(%)  2006(million Yuan) 

food processing 0.44 0.14 0.02  746.56 154.86 31.97 

food production 0.89 0.26 0.03  985.95 175.47 39.33 

beverage production 1.23 0.78 0.04  2565.52 930.49 56.47 

tobacco processing 0.46 0.73 0.08  6093.65 6270.32 1051.89 

textile industry 0.94 0.52 0.05  852.67 352.69 46.42 

garments and other fiber products 0.66 0.38 0.01  427.87 125.92 9.87 

leather,furs,down and related products 0.43 0.30 0.01  301.63 104.58 6.99 

timber,bamboo,cane,palm fiber and straw products 0.98 0.19 0.02  726.55 105.24 14.61 

furniture manufacturing 0.62 0.20 0.02  242.64 19.80 18.82 

papermaking and paper products 1.35 0.84 0.07  1702.49 638.91 60.67 

printing and record medium reproduction 1.02 1.10 0.05  655.52 392.86 38.38 

culture, educational and sports goods 0.97 0.08 0.02  438.74 24.50 4.61 

petroleum processing and coking products 0.45 0.30 0.04  3345.11 1310.39 282.32 

raw chemical materials and chemical products 1.79 0.52 0.09  3691.17 717.97 151.24 

medical and pharmaceutical products 2.36 0.27 0.22  3337.44 286.01 254.68 

chemical fiber 1.70 1.09 0.13  5627.13 2327.93 298.19 

rubber products 1.57 0.36 0.04  2512.10 374.82 53.23 

plastic products 1.57 0.62 0.04  962.57 256.32 15.80 

nonmetal mineral products 1.44 0.39 0.08  989.99 172.65 46.05 

smelting and pressing of ferrous metals 1.53 0.80 0.07  9116.09 2663.93 604.34 

Smelting and pressing of nonferrous 1.30 0.46 0.08  3764.41 862.96 174.15 

metal products 1.29 0.39 0.03  1021.81 171.09 17.73 

ordinary machinery 2.74 0.57 0.06  2689.55 397.83 55.01 

equipment for special purposes 2.68 0.31 0.07  3178.25 279.27 104.54 

transport equipment 2.30 0.53 0.05  6316.75 1138.75 161.99 

electric equipment and machinery 2.70 0.72 0.11  3692.59 534.36 99.05 

electronic and telecommunications equipment 2.22 0.66 0.02  5935.06 1334.83 39.25 

instruments, meters, cultural and office machinery 2.19 0.42 0.03  2075.84 314.19 28.23 

other manufacturing 1.08 0.22 0.04  678.33 53.50 23.04 

Notes: The intensities of the three technical inputs are calculated by current prices. The three technical capital 

stocks are constructed by perpetual inventory method with a depreciation rate of 15 percent and a pre-sample 

growth rate of 5 percent in technical expenditures. N denotes the number of firms in an industry. 
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Table 2  

Time series of technology intensity and technology stocks (1996-2006) 

 
R/Y 

(%) 

F/Y 

(%) 

D/Y 

(%) 

RS/N 

(million Yuan) 

FS/N 

(million Yuan) 

DS/N 

(million Yuan) 

1996 1.17 1.00 0.08 954.87 1206.62 66.54 

1997 1.22 0.76 0.04 1007.26 1207.45 63.60 

1998 1.31 0.60 0.05 1069.26 1182.55 66.46 

1999 1.37 0.46 0.04 1223.05 1181.07 66.36 

2000 1.53 0.51 0.06 1452.89 1146.30 70.24 

2001 1.57 0.52 0.06 1586.54 1095.42 76.49 

2002 1.56 0.59 0.06 1826.51 1141.11 88.59 

2003 1.36 0.43 0.06 1966.41 1043.91 100.63 

2004 1.43 0.24 0.06 1929.52 880.51 108.42 

2005 1.50 0.15 0.05 2357.38 855.73 125.30 

2006 1.49 0.12 0.04 2574.97 775.60 130.65 

Notes: The intensities of the three technical inputs are calculated by current prices. The three technical capital 

stocks are constructed by perpetual inventory method with a depreciation rate of 15 percent and a pre-sample 

growth rate of 5 percent in technical expenditures. N denotes the number of firms in an industry. 



 24 

Table 3  

Estimates of the output elasticities (constant returns to scale not imposed) 

 Stocks  Expenditures 

 Correction  No correction  Correction 

 (1) (2) (3) (4)  (5)  (6) 

constant 
0.0992 

(6.72)*** 

0.1154 

(8.60)*** 

0.1127 

(8.41)*** 

0.1016 

(6.81)*** 

 0.1006 

(6.75)*** 

 0.1067 

(7.87)*** 

∆Ln(C/L) 
0.4237 

(2.87)*** 

0.4764 

(3.28)*** 

0.5024 

(3.49)*** 

0.3983 

(2.67)*** 

 0.4053 

(2.72)*** 

 0.4463 

(3.10)*** 

∆Ln(L) 
0.0111 

(0.08) 

0.0872 

(0.65) 

0.1127 

(0.84) 

-0.0144 

(-0.10) 

 0.0035 

(0.02) 

 0.0420 

(0.31) 

∆Ln(RS) 
0.1503 

(2.15)** 

 

 

 

 

0.1448 

(2.02)** 

 0.1391 

(1.94)* 

 0.0655 

(2.91)*** 

∆Ln(FS) 
 

 

0.0601 

(1.31) 

 

 

0.0542 

(1.18) 

 0.0566 

(1.23) 

 0.0044 

(0.67) 

∆Ln(DS) 
 

 

 

 

0.0109 

(0.55) 

0.0005 

(0.02) 

 0.0004 

(0.02) 

 -0.0016 

(-0.34) 

R2 0.2809 0.2736 0.2700 0.2794  0.2609  0.2869 

F-value 38.6259 37.2865 36.6320 23.4091  21.4032  24.2597 

Notes: The three technical capital stocks are constructed with a 15 percent depreciation rate. Numbers in brackets 

are t-statistics of the estimated parameters. *** indicates that the estimated parameter is significantly different 

from zero at the 1% level of significance, * *at the 5% level, and *at the 10% level. 
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Table 4  

Estimates of the output elasticites (constant returns to scale imposed) 

 Stocks  Expenditures 

 Correction  No correction  Correction 

 (1) (2) (3) (4)  (5)  (6) 

constant 
0.0999 

(8.35)*** 

0.1231 

(19.83)*** 

0.1225 

(18.66)*** 

0.1007 

(8.39)*** 

 0.1009 

(8.40)*** 

 0.1102 

(14.38)*** 

∆Ln(C/L) 
0.4125 

(10.71)*** 

0.3859 

(10.53)*** 

0.3853 

(10.45)*** 

0.4128 

(10.71)*** 

 0.4018 

(10.23)*** 

 0.4030 

(10.88)*** 

∆Ln(RS) 
0.1522 

(2.34)** 

 

 

 

 

0.1424 

(2.11)** 

 0.1397 

(2.07)** 

 0.0666 

(3.01)*** 

∆Ln(FS) 
 

 

0.0655 

(1.45) 

 

 

0.0535 

(1.18) 

 0.0567 

(1.25) 

 0.0045 

(0.69) 

∆Ln(DS) 
 

 

 

 

0.0124 

(0.63) 

0.0005 

(0.02) 

 0.0004 

(0.02) 

 -0.0015 

(-0.32) 

R2 0.2834 0.2751 0.2707 0.2819  0.2635  0.2892 

F-value 58.1372 55.8353 54.6481 29.3608  26.8480  30.3968 

Notes: The three technical capital stocks are constructed with a 15 percent depreciation rate. Numbers in brackets 

are t-statistics of the estimated parameters. *** indicates that the estimated parameter is significantly different 

from zero at the 1% level of significance, * *at the 5% level, and *at the 10% level. 
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Table 5  

Estimates of the rate of return (constant return to scale not imposed) 

 Correction   No correction 

 (1) (2) (3) (4)  (5) 

constant 
0.0844 

(4.80)*** 

0.1129 

(7.82)*** 

0.1086 

(7.68)*** 

0.0856 

(4.76)*** 

 0.0842 

(4.68)*** 

∆Ln(C/L) 
0.5274 

(3.71)*** 

0.5072 

(3.53)*** 

0.5088 

(3.55)*** 

0.5302 

(3.71)*** 

 0.5353 

(3.75)*** 

∆Ln(L) 
0.1506 

(1.14) 

0.1197 

(0.90) 

0.1256 

(0.94) 

0.1507 

(1.13) 

 0.1663 

(1.25) 

R/Y 
1.8662 

(2.48)** 

 

 

 

 

1.8570 

(2.30)** 

 1.8571 

(2.30)** 

F/Y 
 

 

0.0868 

(0.07) 

 

 

-0.5118 

(-0.38) 

 -0.5239 

(-0.39) 

D/Y 
 

 

 

 

8.3853 

(0.98) 

1.9278 

(0.21) 

 1.6479 

(0.18) 

R2 0.2847 0.2693 0.2717 0.2800  0.2620 

F-value 39.3344 36.4962 36.9330 23.4823  21.5162 

Notes: Numbers in brackets are t-statistics of the estimated parameters. *** indicates that the estimated parameter 

is significantly different from zero at the 1% level of significance, * *at the 5% level, and *at the 10% level. 
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Table 6  

Estimates of the rate of return (constant returns to scale imposed) 

 Correction  No correction 

 (1) (2) (3) (4)  (5) 

constant 
0.0989 

(8.16)*** 

0.1236 

(15.26)*** 

0.1200 

(16.07)*** 

0.1002 

(7.92)*** 

 0.1002 

(7.92)*** 

∆Ln(C/L) 
0.3712 

(10.10)*** 

0.3828 

(10.04)*** 

0.3784 

(10.20)*** 

0.3741 

(9.82)*** 

 0.3633 

(9.37)*** 

R/Y 
1.7853 

(2.38)** 

 

 

 

 

1.7813 

(2.22)** 

 1.7729 

(2.20)** 

F/Y 
 

 

0.0597 

(0.05) 

 

 

-0.5188 

(-0.38) 

 -0.5346 

(-0.40) 

D/Y 
 

 

 8.0074 

(0.93) 

1.7801 

(0.19) 

 1.4774 

(0.16) 

R2 0.2839 0.2698 0.2720 0.2793  0.2605 

F-value 58.2959 54.3779 54.9765 29.0027  26.4505 

Notes: Numbers in brackets are t-statistics of the estimated parameters. *** indicates that the estimated parameter 

is significantly different from zero at the 1% level of significance, * *at the 5% level, and *at the 10% level. 
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Table 7 

The effects of different parameters on elasticity estimates 

 �������	������ � �������	����� 

 

������

������ 


������

������ 


������

������ 

� 
������

������ 

 (1) (2) (3)  (4) 

Constant 
0.1004 

(9.01)*** 

0.0986 

(7.19)*** 

0.0999 

(8.30)*** 

 0.0862 

(6.72)*** 

∆Ln(C/L) 
0.4147 

(10.92)*** 

0.4018 

(10.65)*** 

0.4050 

(10.79)*** 

 0.3886 

(10.41)*** 

∆Ln(RS) 
0.1360 

(2.50)** 

0.1282 

(1.89)* 

0.1223 

(2.22)** 

 0.1726 

(2.50)** 

∆Ln(FS) 
0.0483 

(1.48) 

0.0404 

(0.99) 

0.0412 

(1.32) 

 0.0476 

(1.04) 

∆Ln(DS) 
-0.0013 

(-0.08) 

0.0011 

(0.06) 

-0.0004 

(-0.03) 

 0.0026 

(0.13) 

R2 0.2890 0.2779 0.2839  0.2701 

F-value 30.3743 28.8118 29.6416  27.7356 

Notes: Numbers in brackets are t-statistics of the estimated parameters. *** indicates that the estimated parameter 

is significantly different from zero at the 1% level of significance, * *at the 5% level, and *at the 10% level. 
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Table 8  

The effects of different parameters on rate of return estimates 

 �������	����� 

Constant 
0.0900 

(7.05)*** 

∆Ln(C/L) 
0.3459 

(9.48)*** 

R/Y 
1.9630 

(2.42)** 

F/Y 
-0.9145 

(-0.67) 

D/Y 
3.1931 

(0.34) 

R2 0.2668 

F-value 27.2952 

Notes: Numbers in brackets are t-statistics of the estimated parameters. *** indicates that the estimated parameter 

is significantly different from zero at the 1% level of significance, * *at the 5% level, and *at the 10% level. 
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Table 9  

The effects of the technical variables on the Malmquist index and its components 

 (1) (2) (3) 

 Productivity growth Technical efficiency change Technological progress 

Constant 
0.0476 

(2.57)*** 

-0.0689 

(-4.95)*** 

0.1242 

(9.55)*** 

∆Ln(RS) 
0.4749 

(4.32)*** 

0.5248 

(6.36)*** 

-0.0732 

(-0.95) 

∆Ln(FS) 
0.0913 

(1.18) 

-0.0323 

(-0.55) 

0.1143 

(2.10)** 

∆Ln(DS) 
0.0073 

(0.21) 

0.0305 

(1.17) 

-0.0279 

(-1.14) 

R2 0.0663 0.1352 0.0118 

F-value 7.8420 16.0574 2.1501 

Notes: Numbers in brackets are t-statistics of the estimated parameters. *** indicates that the estimated parameter 

is significantly different from zero at the 1% level of significance, * *at the 5% level, and *at the 10% level. 


